Julia SVDS for Loop Closure

Timmy Galvin
Loop Closure
Loop Closure

• Fundamental problem in navigation – computation/storage
Loop Closure

• Fundamental problem in navigation – computation/storage

• Place recognition for a previously visited location
 • Simultaneous Localization and Mapping (SLAM)

• Place recognition for an external database
Loop Closure Technique

- 1. Extract image features
Loop Closure Technique

1. Extract image features

2. Generate a scene descriptor
 - Based on vocabulary of features
 - Can be extremely sparse

\[z = (w_1, 0, \ldots, 0, w_2, 0, \ldots) \]
Loop Closure Technique

• 1. Extract image features

• 2. Generate a scene descriptor
 • Based on vocabulary of features
 • Can be extremely sparse

• 3. Find images with high similarity

\[z = (w_1, 0, \ldots, 0, w_2, 0, \ldots, 0, \ldots) \]

\[\text{dot}(z_1, z_2) > \text{threshold} \]
Loop Closure with Scene Sequences

- Use sequences of scenes rather than individual scenes
Loop Closure with Scene Sequences

- Use sequences of scenes rather than individual scenes
- Compute a similarity matrix

\[
S(i, j) = \frac{\sum_{i=1}^{\nu} z_i z_j}{\sqrt{\sum_{i=1}^{\nu} z_i^2} \sqrt{\sum_{i=1}^{\nu} z_j^2}}
\]

\[
z_i = [0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ ...] \quad z_j = [0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ ...]
\]
Loop Closure with Scene Sequences

• Use sequences of scenes rather than individual scenes

• Compute a similarity matrix

\[S(i, j) = \frac{\sum_{i=1}^{\nu} z_i z_j}{\sqrt{\sum_{i=1}^{\nu} z_i^2} \sqrt{\sum_{j=1}^{\nu} z_j^2}} \]

\[z_i = [0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ ...] \]

\[z_j = [0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ ...] \]

• Find local sequences (off-diagonal traces)
 • Modified Smith-Waterman algorithm
Loop Closure with Scene Sequences

• Use sequences of scenes rather than individual scenes

• Compute a similarity matrix

\[
S(i, j) = \frac{\sum_{i=1}^{N} z_i z_j}{\sqrt{\sum_{i=1}^{N} z_i^2} \sqrt{\sum_{i=1}^{N} z_j^2}}
\]

\[
z_i = [0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 0 \ldots]
\]

\[
z_j = [0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ldots]
\]

• Find local sequences (off-diagonal traces)
 • Modified Smith-Waterman algorithm

• Problem: rectangular pattern due to dominant features (common mode similarity) – false positives
Dominant Features

Dominant Features

• To remove dominant features → rank reduction
• Using singular value decomposition:

\[S' = \sum_{i=r^*}^{n} u_i \lambda_i v_i^T \]
\[r^* = \arg \max_r H(M, r) \]

\[H(M, r) = \frac{-1}{\log(n)} \sum_{k=r}^{n} \rho(k, r) \log(\rho(k, r)) \] \[\rho(i, r) = \frac{\lambda_i}{\sum_{k=r}^{n} \lambda_k} \]

Reduction

Similarity matrix

After rank reducing
Smith-Waterman

After rank reducing

After Smith-Waterman
Towards Real-time

• SVD: huge bottleneck
 • 60% of the step-by-step run-time
 • Scales poorly as scene size increases

• Replace with SVDS
 • Calculates k most significant singular values/vectors
 • Better performance for large, sparse matrices
 • Singular value tolerance can be specified
SVDS and Julia

- Available SVDS
 - ARPACK – manipulating eigs on Hermitian matrix A^TA
 - PROPACK – using Golub-Kahan-Lanczos (GKL) with implicit restarting

- Julia SVDS in the works:
 - Currently at basic GKL bidiagonalization
 - Part of a larger IterativeSolvers package effort
 - Provide Julia implementation of ARPACK methods
Golub-Kahan-Lanczos

• Decompose A iteratively into:

 $A = PBQ^*$

• Yielding a bidiagonal B:

$$B_n = \begin{bmatrix}
\alpha_1 & \beta_1 \\
\vdots & \ddots \\
\alpha_{n-1} & \beta_{n-1} \\
& \alpha_n
\end{bmatrix}$$

• Perform SVD of B:

 $B = X\Sigma Y^*$

• A is now decomposed as:

$$A = PX\Sigma Q^*Y^* = U\Sigma V^*$$
Problems with GKL

• Loss of orthogonality of left Lanczos vectors (P) and of right right Lanczos vectors (Q) through iterations

• Solutions
 • Full orthogonalization
 • High computational cost
 • Cost grows as the iterative method proceeds
 • Partial orthogonalization
 • Perform corrections when orthogonality drops below a threshold
 • Restarting
 • Restarts the computation after a fixed number of iterations to limit the number of Lanczos steps (and size of P and Q)
Performance

- Calculating 10 most significant singular values of matrices with sparsity between .01 and .1
- Comparison of different modifications to GKL
Summary

• Reimplemented versions of Golub-Kahan-Lanczos bidiagonalization for calculation of the partial SVD
 • Orthogonalization methods
 • Restarting

• To be done:
 • Cleaned up and optimized
 • Further tested against existing implementations
 • Comparison of restart methods (implicit versus thick)